Brill--Noether Theory over the Hurwitz space

Isabel Vogt (Brown University)

09-Dec-2021, 23:30-00:30 (4 years ago)

Abstract: Let C be a curve of genus g. A fundamental problem in the theory of algebraic curves is to understand maps of C to projective space of dimension r of degree d. When the curve C is general, the moduli space of such maps is well-understood by the main theorems of Brill--Noether theory. However, in nature, curves C are often encountered already equipped with a map to some projective space, which may force them to be special in moduli. The simplest case is when C is general among curves of fixed gonality. Despite much study over the past three decades, a similarly complete picture has proved elusive in this case. In this talk, I will discuss joint work with Eric Larson and Hannah Larson that completes such a picture, by proving analogs of all of the main theorems of Brill--Noether theory in this setting.

algebraic geometrynumber theory

Audience: researchers in the topic


SFU NT-AG seminar

Series comments: The Number Theory and Algebraic Geometry (NT-AG) seminar is a research seminar dedicated to topics related to number theory and algebraic geometry hosted by the NT-AG group (Nils Bruin, Imin Chen, Stephen Choi, Katrina Honigs, Nathan Ilten, Marni Mishna).

We acknowledge the support of PIMS, NSERC, and SFU.

For Fall 2025, the organizers are Katrina Honigs and Peter McDonald.

We normally meet in-person in the indicated room. For online editions, we use Zoom and distribute the link through the mailing list. If you wish to be put on the mailing list, please subscribe to ntag-external using lists.sfu.ca

Organizer: Katrina Honigs*
*contact for this listing

Export talk to